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Sequence-based estimation of minisatellite
and microsatellite repeat variability
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Department of Molecular and Microbial Systems, Katholieke Universiteit Leuven, Faculty of Applied Bioscience and Engineering,
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Variable tandem repeats are frequently used for genetic mapping, genotyping, and forensics studies. Moreover,
variation in some repeats underlies rapidly evolving traits or certain diseases. However, mutation rates vary greatly
from repeat to repeat, and as a consequence, not all tandem repeats are suitable genetic markers or interesting
unstable genetic modules. We developed a model, “SERV,” that predicts the variability of a broad range of tandem
repeats in a wide range of organisms. The nonlinear model uses three basic characteristics of the repeat (number of
repeated units, unit length, and purity) to produce a numeric “VARscore” that correlates with repeat variability.
SERV was experimentally validated using a large set of different artificial repeats located in the Saccharomyces cerevisiae
URA3 gene. Further in silico analysis shows that SERV outperforms existing models and accurately predicts repeat
variability in bacteria and eukaryotes, including plants and humans. Using SERV, we demonstrate significant
enrichment of variable repeats within human genes involved in transcriptional regulation, chromatin remodeling,
morphogenesis, and neurogenesis. Moreover, SERV allows identification of known and candidate genes involved in
repeat-based diseases. In addition, we demonstrate the use of SERV for the selection and comparison of suitable
variable repeats for genotyping and forensic purposes. Our analysis indicates that tandem repeats used for genotyping
should have a VARscore between 1 and 3. SERV is publicly available from http://hulsweb1.cgr.harvard.edu/SERV/.

[Supplemental material is available online at www.genome.org.]

Virtually all prokaryotic and eukaryotic genomes contain signifi-
cant portions of tandem repeats, that is, stretches of DNA that are
repeated head to tail. Tandem repeats are further classified into
“microsatellites,” which have repeat units containing up to 9
nucleotides (nt), and “minisatellites,” with longer repeated units.
The close proximity of multiple (nearly) identical DNA sequences
causes frequent recombination or slippage events, generating
new alleles that differ in the number of repeat units. Their insta-
bility makes tandem repeats ideally suited for fingerprinting,
genotyping, and forensic analyses.

Because of their variability and their sequence simplicity,
repeats have traditionally been considered as nonfunctional
parasitic “junk” DNA (Orgel and Crick 1980). However, the re-
cent sequencing of various genomes shows that repeats occur
not only in intergenic gene deserts but often also in promoters
and even coding regions (O’Dushlaine et al. 2005; Thomas 2005;
Verstrepen et al. 2005). One particular category of intragenic
repeats are the triplet repeats associated with neurodegenera-
tive diseases, including Huntington’s disease, dentatorubro-
pallidoluysian atrophy, spinobulbar muscular atrophy, and
spinocerebellar ataxia (Gatchel and Zoghbi 2005). All of
these disorders are progressive, with a strong correlation be−
tween disease onset and the number of triplet repeats in specific
genes.

Apart from these negative consequences of repeat variabil-
ity, hypermutable repeats may also have a beneficial role. Vari-

able repeats located in certain key genes makes these genes hy-
pervariable, allowing swift adaptive evolution of certain traits
while maintaining low mutation rates in the rest of the genome
(Rando and Verstrepen 2007). A genome-wide survey for tandem
repeats located within coding regions in the Saccharomyces cere-
visiae genome indicates that such intragenic repeats are mostly
found within stress-induced and cell surface genes (Bowen et al.
2005; Verstrepen et al. 2005; Richard and Dujon 2006; Levdansky
et al. 2007). The variability of these repeats may permit yeast cells
to quickly adapt their cell surface properties to a changing envi-
ronment. For example, variation in the repeats located in the
FLO1 and FLO11 genes lead to gradual changes in the cell’s ca-
pacity to adhere to surfaces and form biofilms (Verstrepen et al.
2004, 2005; Fidalgo et al. 2006). Similarly, in dogs, variable re-
peats located within key developmental genes have been sug-
gested to permit fast evolution of limb and skull morphology
(Fondon and Garner 2004). These few known cases are presum-
ably just the tip of the iceberg. Analyses presented in this study
demonstrate that >30% of the genes in the human genome
contain repeats in coding regions (exons). Hence, whereas the
current focus of most large-scale genotype-to-phenotype map-
ping lies on single-nucleotide polymorphisms (SNPs), other phe-
nomena such as repeat variation may also significantly contrib-
ute to genetic (and phenotypic) variation between organisms
(Caburet et al. 2005; Rando and Verstrepen 2007; Stranger et al.
2007).

Whereas most tandem repeats are unstable compared with
nonrepeated DNA, the mutation rates vary widely from repeat to
repeat. Most repeat mutation rates are about 10- to 10,000-fold
higher than those of nonrepeated regions and lie between 10�3

and 10�6 per cellular generation (Verstrepen et al. 2005). How-
ever, some tandem repeats appear to be nearly invariable, while
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others, most notably certain microsatellites in the human ge-
nome, show mutation rates >10�2 (Ellegren 2004). It has been
shown that the majority of variation in both microsatellites and
minisatellites is a consequence of homology-dependent double-
stranded break repair, such as synthesis-dependent strand an-
nealing (SDSA) or break-induced replication (Paques and Haber
1999; Lopes et al. 2006). For repeats that are prone to loop for-
mation, replication slippage may be an additional source of vari-
ability (Viguera et al. 2001).

Repeats appear to be evenly distributed across the genome,
and repeats located near meiotic hot spots are not noticeably
more polymorphic than those located in recombination cold
spots (Richard and Dujon 2006). This suggests that the muta-
tion frequency of a repeat might mainly depend on its intrin-
sic properties rather than its genomic location. Hence, it might
be possible to estimate a repeat’s variability from its basic fea-
tures.

Several algorithms are available to detect tandem repeats,
including ETANDEM (Rice et al. 2000), mREPS (Kolpakov et al.
2003), and Tandem Repeat Finder (TRF) (Benson 1999), the latter
arguably the most used program to date. However, few tools are
available to automatically detect “orthologous” repeats in differ-
ent genomes (one notable exception is described in Denoeud and
Vergnaud 2004). Similarly, only a handful of previous studies
have developed models to predict repeat variability. First, Wren
et al. (2000) described a set of “rules of thumb” to predict
whether a given tandem repeat is hypervariable. More specifi-
cally, these authors postulated that for dinucleotide repeats, at
least 8 units are needed to have a variable repeat. The minimal
number of units drops to 7, 6, 5, and 4 for trimers, tetramers,
pentamers to nonamers, and repeat units of 10 nt or more, re-
spectively. Later, Denoeud et al. (2003) described a model aimed
at classifying a specific category of minisatellite repeats (unit
length 17, copy number >9, purity >70%) in the human genome.
Recently, Näslund et al. (2005) used linear logistic regression to
model variability of a limited set of minisatellite repeats in the
human genome.

While these simple models are quite capable of accurately
predicting the variability of repeats closely resembling the lim-
ited training data set, their performance has not been validated
for other repeats or other species, making them of only limited
use for genome-wide analyses (O’Dushlaine and Shields 2006).
Moreover, repeat variability is not an all-or-nothing phenom-
enon, and a continuous scale seems more appropriate than a
binary classification. Last but not least, a linear model may not be
suitable to capture complex biological phenomena such as repeat
variability. Adding one extra repeat unit to a repeat consisting of
five units may, for example, have a relatively larger effect on
mutation rates than adding a unit to a repeat that already con-
tains 40 units.

Because of the large variation in repeat mutation rates, re-
sults obtained from repeat-based genotyping and forensics stud-
ies largely depend on the exact repeat(s) used. The lack of any
standards makes it impossible to compare studies and sometimes
even leads to flawed conclusions. Here, we describe the develop-
ment of a general nonlinear model capable of predicting repeat
variability for all types of tandem repeats (microsatellites and
minisatellites) in a wide range of organisms spanning the major
kingdoms of life. We demonstrate that the model outperforms
existing models and that it can be used to identify and charac-
terize potentially interesting (variable) repeats for genotyping,
forensics, or functional studies.

Results

Genome-wide detection of variable tandem repeats

Existing models to predict repeat variability were based on small,
specific data sets and used simple (linear) algorithms. As a result,
while these models are quite capable of predicting variability for
the limited data sets they were trained on, they are not suited as
a general method to predict the variability of a broad range of
repeats in a broad range of organisms. Therefore, we decided to
use more complex models and large, unbiased training and vali-
dation data sets that represent the full spectrum of naturally oc-
curring tandem repeats.

To obtain such expansive data sets, we first developed a
method to detect and compare orthologous tandem repeats in
large (whole-genome) sequences. Repeat data sets were as-
sembled for yeast (Saccharomyces cerevisiae), primates (Homo
sapiens), insects (Drosophila melanogaster), plants (Arabidopsis
thaliana), and bacteria (Neisseria meningitides and Mycobacterium
tuberculosis). For each data set, repeats were detected and com-
pared between several closely related strains or species and sub-
sequently categorized as variable (if the number of repeat units
differed between the compared strains/species) or nonvariable (if
the number of repeats was constant in all strains or species; see
Methods for details).

As anticipated, this procedure generated large data sets con-
taining an unbiased collection of naturally occurring repeats. For
example, the S. cerevisiae data set comprises 2743 conserved re-
peat loci, of which 242 were categorized as variable between
three S. cerevisiae strains. The data indicate just how different
tandem repeats can be. The unit length ranges from 2 to 81 nt,
with some repeats having as many as 80 units. Moreover, the
repeats found by this procedure seem to agree very well with
manually curated smaller data sets. For example, our M. tubercu-
losis data set comprised 20 out of 21 repeats found by Le Flèche
et al. (2002), and all repeats are appropriately labeled as variable.

Generation of a predictive model for repeat variability

Our aim was to generate a predictive model that accurately esti-
mates repeat variability from a set of basic repeat characteristics.
We used multivariate analysis based on least square support vec-
tor machines (LS-SVMs) with nonlinear radial basis function
(RBF) kernels to train a model that predicts repeat variability.
This model was generated using a balanced training data set of
320 repeats comprising an equal number of variable and nonva-
riable repeats of all naturally occurring tandem repeats in the
yeast genome and the 2423 remaining repeats as a validation
data set (see Methods for technical details on how this model was
developed and evaluated).

The final model (SERV; http://hulsweb1.cgr.harvard.edu/
SERV/) uses three basic characteristics of a tandem repeat (num-
ber of units, unit length, and purity) as input variables. On the
basis of these variables, SERV generates a continuous output (re-
ferred to as “VARscore”). The VARscore serves as a continuous
estimation of repeat variability, with larger VARscores correlat-
ing with higher predicted repeat variability. Visualization of the
model (Supplemental Fig. S1) shows the intuitive relation
between the input variables and the predicted variability
(VARscore) of the corresponding repeat. The single most impor-
tant factor determining a repeat’s predicted variability is the
number of units, with higher repeat units leading to increased
predicted variability. Increased repeat purity or unit length also
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leads to higher predicted variability, although the effect is
smaller. These intuitive conclusions are further supported by our
experimental analyses (Fig. 1).

SERV accurately predicts repeat variability in various genomes

To evaluate the performance of the model, we compared our
tandem repeat variability predictions to the few other existing
methods, using five whole-genome data sets obtained from dif-
ferent groups of organisms (human/primate, insects, plants, and
two bacterial species).

Since the models developed by Wren et al. (2000) and
Denoeud et al. (2003) produce a binary output (variable/non-
variable), it is impossible to directly compare these predictions
with our model, which has a continuous output value. To over-
come this problem, we defined a VARscore cutoff based on the
receiver operating characteristic (ROC) curve to differentiate
predicted variable repeats from nonvariable repeats, so that the
output of our model essentially becomes binary, classifying
repeats as variable (VARscore above cutoff) or nonvariable
(VARscore below cutoff). The cutoff score was set at the value
that optimizes the sum of sensitivity and specificity of our model
on the yeast training set and this same value (0.0273) was sub-
sequently used to classify the repeats in the other data sets (see
Methods for details and definitions). The results of these com-
parisons between all models are given in Table 1. On average,
the method developed by Wren et al. (2000) has a slightly higher
specificity but suffers from extremely low sensitivities. Sensitivity
and specificity can be combined in a single measure, called
Matthew’s correlation coefficient (MCC) (see formula in Meth-
ods), a value ranging from �1 to 1 (1 being a perfect prediction).
On the basis of this value, SERV yields the best overall perfor-
mance. One last way to compare the performance of the models
is by calculating the sum of specificity and sensitivity. As the last
column in Table 1 shows, our model systematically yields a con-
siderably higher sum of specificity and sensitivity than the other
models.

The method developed by Näslund et al. (2005) produces
a continuous output value, allowing a more rigorous compari-
son, using ROC curves (see Supplemental Fig. S2). Again, SERV
shows a better average performance, with an area under the ROC
curve (AUC) performance that is always significantly higher
(P < 0.0001) than the Näslund model, except for the bacterial
data sets, where no significant difference was found.

The model developed by Denoeud et al. (2003) shows high
specificity but low sensitivity for higher eukaryotes and low
specificity but high sensitivity for the tested prokaryotes. As
shown in Supplemental Figure S3, yeast, plant, and human tan-
dem repeats are relatively GC-poor, whereas bacterial repeats are
relatively GC-rich. Interestingly, this GC content correlates with
the performance of Denoeud’s model, which uses GC content as
a main predictor for repeat variability. For a given species, the
more GC-rich the repeats are, the higher the predicted variabil-
ity, resulting in a higher sensitivity but a reciprocal decrease in
specificity. This makes the performance variable between differ-
ent species. Näslund et al. (2005) also use GC content as a pre-
dictive variable but with a low weight. SERV does not rely on
nucleotide composition, which eliminates any sensitivity to
compositional biases across different species.

Overall, these results show that SERV systematically outper-
forms existing methods on a wide spectrum of species. Moreover,
instead of classifying repeats as variable or nonvariable, the

model produces a continuous output (VARscore), allowing a
complete ranking of all repeats in a data set according to their
predicted variability. It is important to note that most existing
models were not intended to predict repeat variability over a
broad spectrum of repeat categories. Hence, our study does not
discredit their usefulness for the goals for which they were de-
veloped. In fact, when SERV is used to predict the variability of
the limited sets of repeats for which these other models were
trained, the respective specific model always (slightly) out-
perform SERV, although the difference is not statistically signifi-
cant (Supplemental Table S1).

VARscore correlates with experimental repeat mutation rates

The idea behind SERV was to generate a continuous VARscore
that would correlate with the experimental variability of a given
repeat. To investigate our model’s ability to accurately predict
mutation rates in tandem repeats, we constructed a large set of
different tandem repeats in the yeast genome and evaluated the
correlation between the VARscore and the experimental muta-
tion rates.

In total, we constructed 30 repeats that cover the parameter
space of natural repeats found in the yeast genome (unit lengths
of 2, 10, and 20 nt; number of units between 2 and 50; and purity
between 62.5% and 100%) (Fig. 1). For each different repeat, we
performed at least three independent fluctuation analyses to es-
timate the mutation rates. The results indicate that the three
parameters used in our model (i.e., number of repeat units, unit
length, and repeat purity) indeed influence mutation rates. Re-
gression shows an exponential relation between these parameters
and mutation rates (Fig. 1C). Furthermore, when all VARscores
for these repeats are plotted against their mutation rates, it be-
comes clear that VARscores indeed correlate well with mutation
rates, especially when taking experimental errors and the diver-
sity of the set of artificial repeats into account (R2 = 0.66,
P = 4 � 10�8; Fig. 1D).

In summary, the VARscore of a repeat correlates with its
mutation rate, confirming that VARscores can be used to rank
different repeats according to their predicted variability. We now
explore a few different applications of this analysis.

VARscore as a benchmarking tool for variable repeats used
as markers in fingerprinting

One major application of SERV is the selection and comparison
of tandem repeats used in genotyping and forensic research. To
be suited for genotyping purposes, it is essential that the repeat
displays sufficient variability, thereby increasing the probability
it will be able to discriminate between relatively closely related
individuals. On the other hand, excessive hypervariability is un-
wanted as it would obscure genetic relatedness. Until now, the
selection of suitable markers has been somewhat “hit or miss.”
This is perfectly illustrated by comparing two recent papers that
use variable tandem repeats to characterize Plasmodium vivax ge-
netic diversity. In the first study, Leclerc et al. (2004) found very
little diversity in a set of tandem repeats across a large set of
isolates from eight geographical locations. Of the 13 repeat loci
studied, only one was variable. Hence, they concluded that P.
vivax likely underwent a series of recent selective sweeps or a
major bottleneck event that all but eliminated existing genetic
diversity. However, in a similar study, Imwong et al. (2006)
found a plethora of diversity in tandem repeats, with markers
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Figure 1. VARscore correlates with repeat mutation rates. (A) To evaluate the correlation between the VARscore and experimentally determined
mutation rates, a series of 30 different artificial repeats was inserted right behind the START codon of the genomic URA3 gene of a haploid S. cerevisiae
S288C yeast strain. Three classes of strains were constructed: (1) a series of “CA” dinucleotide repeats with varying number of units; (2) a series of CA
repeats with a constant number of units, but varying repeat purity; (3) a series of strains with a 10-mer and 20-mer unit length and varying number
of units. (B) Since the number of nucleotides in each repeat is not a multitude of three, changes in the number of repeats lead to shifts in the URA3
reading frame, so that some strains will be Ura+, and others Ura�, depending on the number of repeat units they contain. Moreover, because of the
instability of tandem repeats, the number of repeats will change in a fraction of each mitotic division, resulting in frequent shifts between Ura+ and URA�

phenotypes. This can be demonstrated by growing cells in either SC–Ura or 5-FOA medium, which selects for Ura+ and Ura� strains, respectively (see
Methods for details). (C) Plotting the mutation rates in the various repeat classes shows an exponential increase in mutation events with increasing unit
number and purity. (D) Plotting VARscores for each repeat against their experimental mutation rates shows the correlation between VARscore and
mutation rates, indicating that VARscores can be used as a rough estimation of mutation rate.
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having between 7 and 18 alleles per locus and many isolates
being heterozygous for several loci. In an interesting perspective
paper, Russell et al. (2006) suggested that these dramatically dif-
ferent conclusions may be due to differences in the chosen
markers—the markers in Leclerc et al.’s study simply being less
variable than those chosen by Imwong and coworkers.

We decided to use SERV to check the predicted variability
of both marker sets. As shown in Figure 2, there are striking
differences in the VARscores for both sets of markers. Indeed,
the scores for Leclerc et al.’s markers (Leclerc et al. 2004) are
significantly lower than those for the repeats used by Imwong
et al. (2006) (mean for Leclerc et al. is 0.46 compared with 1.1 for
Imwong et al.; P = 4.8 � 10�5). Interestingly, the only excep-
tion is the one marker in the Leclerc data set that does show
variability among the P. vivax isolates (VARScore for this
marker is 1.1). We also determined the VARscores of some of
the most frequently used tandem repeat markers for human fo-
rensics (Butler 2006) (Supplemental Table S2). The set of 15 mark-
ers shows a mean and median VARscore of 1. Hyper-unstable
repeats often have VARscores above 3 (e.g., 5.8 for the human
CEB1-1.8 repeat studied by Nicolas and colleagues; Lopes et al.
2006).

This analysis again demonstrated the correlation between a
repeat’s VARscore and its instability. Hence, VARscores can be
used as a criterion to select repeat loci suitable for genotyping
and fingerprinting. On the basis of our analyses, we would rec-
ommend using repeats with a VARscore of at least 1, but lower
than 2 (for divergent strains/species) or 3 (for closely related
strains or individuals).

Human genes involved in transcriptional regulation
and morphogenesis are enriched for variable repeats

As indicated, recent findings suggest that variable repeats may
influence biological features. In particular, variable repeats lo-
cated within protein coding regions introduce variability in the
corresponding protein. This may allow these proteins to evolve
faster and adapt swiftly to changes in selective pressure. In addi-
tion, uncontrolled variation in coding repeats is known to be
associated with certain (human) diseases.

The authors of previous studies have already mapped the
occurrence of coding repeats in the human genome (Denoeud et
al. 2003; O’Dushlaine et al. 2005). However, these studies cannot
predict which of these repeats will in fact be hypervariable and
which are rather stable (and thus less likely to be involved in
diseases or swift adaptation). We therefore performed our own
analysis of the human coding regions and used SERV to rank the
repeats according to their predicted variability (VARscore) and
then determine which functional gene classes are enriched and
depleted in this set.

We analyzed gene ontology for four groups of genes: (1) all
human genes, (2) genes with tandem repeats, (3) top 25% ranked
genes according to VARscore, and (4) top 15% genes according to
VARscore. Results for functional categories that give significant
enrichment in the top 15% of VARscores are reported in Table 2.
The table shows a correlation between increasing VARscores and
the proportion of genes belonging to every significant functional
class. To validate these predictions, we used human EST (ex-
pressed sequence tags) data to investigate whether the repeats in

Table 1. Benchmarking of the SERV model and comparison with existing models

AUC True Pos. False pos. True neg. False neg. Sensitivity Specificity MCC
(Sensitivity +
Specificity)/2

Yeast
SERV 96.2% 70 160 2181 12 85.4% 93.2% 0.484 89.3%
Näslund et al. (2005) 81.1% 45 186 2155 37 54.9% 92.1% 0.289 73.5%
Wren et al. (2000) NA 11 53 2288 71 13.4% 97.7% 0.126 55.6%
Denoeud et al. (2003) NA 19 326 2014 63 23.2% 86.1% 0.048 54.6%

Human
SERV 96.2% 168,414 7364 196,620 20,355 89.2% 96.4% 0.860 92.8%
Näslund et al. (2005) 95.3% 16,5404 16674 187,310 23,365 87.6% 91.8% 0.796 89.7%
Wren et al. (2000) NA 50,473 2327 201,657 138,296 26.7% 98.9% 0.375 62.8%
Denoeud et al. (2003) NA 58,408 38,289 165,695 130,361 30.9% 81.2% 0.141 56.1%

Drosophila
SERV 97.0% 1508 791 12,759 256 85.5% 94.2% 0.712 89.8%
Näslund et al. (2005) 88.2% 964 481 13,069 800 54.6% 96.5% 0.558 75.5%
Wren et al. (2000) NA 227 193 13,357 1537 12.9% 98.6% 0.224 55.7%
Denoeud et al. (2003) NA 868 5160 8389 894 49.3% 61.9% 0.073 55.6%

Plant
SERV 83.5% 2635 2042 23,408 1889 58.2% 92.0% 0.495 75.1%
Näslund et al. (2005) 78.8% 2331 2074 23,376 2193 51.5% 91.9% 0.439 71.7%
Wren et al. (2000) NA 1007 514 24,936 3517 22.3% 98.0% 0.330 60.1%
Denoeud et al. (2003) NA 620 2899 22,549 3899 13.7% 88.6% 0.026 51.2%

Bacteria (N. meningitidis)
SERV 78.0% 13 6 404 38 25.5% 98.5% 0.379 62.0%
Näslund et al. (2005) 68.3% 9 7 403 42 17.6% 98.3% 0.273 58.0%
Wren et al. (2000) NA 9 0 410 42 17.6% 100.0% 0.400 58.8%
Denoeud et al. (2003) NA 21 254 156 30 41.2% 38.0% �0.133 39.6%

Bacteria (M. tuberculosis)
SERV 71.8% 69 335 2407 45 60.5% 87.8% 0.271 74.2%
Näslund et al. (2005) 74.7% 9 19 2723 105 7.9% 99.3% 0.143 53.6%
Wren et al. (2000) NA 7 7 2735 107 6.1% 99.7% 0.165 52.9%
Denoeud et al. (2003) NA 51 2291 447 51 50.0% 16.3% �0.165 33.2%

(AUC) Area under the ROC curve; (MCC) Matthew’s correlation coefficient; (NA) not available.
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these human genes indeed vary among transcripts isolated from
different individuals (see Methods for details). The variability of
the repeats in these EST sequences confirms the predictions made
by SERV. As shown in the last column of Table 2, gene categories
enriched for genes containing repeats with high VARscores also
show significant enrichment in variable ESTs.

Two main Gene Ontology (GO) classes that show enrich-
ment for potentially variable repeats, stand out: transcriptional
regulation and development. Highly polymorphic tandem re-
peats in genes involved in transcription regulation (such as tran-
scription factors) could lead to modified transcription activities
and thus swift evolution (Caburet et al. 2004, 2005; Fondon and
Garner 2004). Genes involved in development are also enriched
for variable repeats. Enrichment for these genes is perfectly in
line with the work of Fondon and Garner (2004), which suggests
that variable repeats in key regulators of morphological develop-
ment can generate diversity in dog breeds.

Other development classes also emerge from our data set,
including genes involved in neurogenesis and brain develop-
ment. Genes containing intragenic trinucleotides repeats have
indeed been linked to these phenomena (Karlin and Burge 1996),
as well as neurodegenerative diseases (see below). In general,
these findings agree with the previous observation of O’Dush-
laine et al. (2005), who find enrichment for variable repeats in
genes involved in morphogenesis and protein binding. However,
the latter methodology does not allow proving the statistical sig-
nificance of such enrichment, except for one GO category (pro-
tein binding). Moreover, the analysis depends on the availability
of sufficient independent EST sequences. Clearly, classifying
genes according to their VARscore and only working with a frac-
tion of all genes that contain repeats increases the statistical
power of such enrichment analyses.

VARscore allows identification of genes involved
in repeat-based diseases

A last demonstration of the usefulness of SERV is its use as a tool
to identify candidate genes underlying repeat-dependent dis-
eases. Tandem repeats are known to be involved in various
human genetic diseases. We therefore tested whether our model

Figure 2. VARscore as a benchmarking tool for genotypic markers. All
tandem repeats in the P. vivax genome were plotted according to their
VARscore. The circles represent the VARscores of the markers used in two
independent genotyping studies. The top row are the score for the mark-
ers used by Leclerc et al. (2004) who found very little variability in these
markers, except for one marker, the one with the highest VARscore (far
right point). The markers used by Imwong et al. (2006) (bottom row) have
significantly higher VARscores, which agrees with the observed variability
for these markers.

Table 2. Specific classes of human genes show enrichment for variable intragenic repeats

Biological process All genes

Genes with
tandem
repeats

Top 25%
genes based
on VARscore

Top 15%
genes based
on VARscore

Adjusted P-value
top 15% genes

vs. all genes

Top 15% genes
vs. all genes

(EST supported)
Adjusted P-value
(EST supported)

Regulation of transcription
from RNA polymerase II
promoter 469 (12) 262 (15.86) 94 (22.82) 70 (26.02) 8.05 � 10�9 37 (27.82) 2.17 � 10�7

Positive regulation
of transcription.
DNA-dependent 234 (5.99) 133 (8.05) 46 (11.17) 35 (13.01) 6.09 � 10�4 18 (13.53) 7.54 � 10�4

Forebrain development 52 (0.73) 35 (1.06) 16 (1.72) 13 (2.51) 4.15 � 10�3 6 (2.67) 9.86 � 10�2

Negative regulation of
metabolic process 399 (3.32) 207 (4.17) 68 (5.45) 44 (6.27) 3.35 � 10�3 27 (9.57) 9.79 � 10�6

Embryonic morphogenesis 147 (1.22) 82 (1.65) 31 (2.48) 21 (2.99) 7.90 � 10�3 6 (2.13) 2.69 � 10�2

mRNA metabolic process 275 (2.46) 151 (3.24) 52 (4.37) 33 (4.90) 9.28 � 10�3 14 (5.17) 7.54 � 10�2

Sensory organ development 116 (1.04) 59 (1.27) 29 (2.43) 18 (2.67) 1.11 � 10�2 7 (2.58) 1.42 � 10�3

Cell fate commitment 95 (0.79) 52 (1.05) 24 (1.92) 15 (2.14) 1.96 � 10�2 9 (3.19) 2.70 � 10�3

Base-excision repair.
DNA ligation 3 (0.04) 3 (0.09) 3 (0.32) 3 (0.58) 1.96 � 10�2 2 (0.89) 1

Chromatin remodeling 50 (1.28) 28 (1.69) 15 (3.64) 11 (4.09) 2.26 � 10�2 9 (6.77) 9.27 � 10�2

Organ morphogenesis 392 (3.51) 213 (4.58) 66 (5.54) 41 (6.08) 2.45 � 10�2 13 (4.80) 1.05 � 10�3

Neurogenesis 305 (2.73) 169 (3.63) 55 (4.62) 34 (5.04) 2.55 � 10�2 17 (6.27) 7.54 � 10�4

Anterior/posterior pattern
formation 77 (0.69) 50 (1.07) 14 (1.18) 13 (1.93) 3.01 � 10�2 4 (1.48) 9.08 � 10�2

Ribosome assembly 8 (0.07) 6 (0.13) 4 (0.34) 4 (0.59) 3.51 � 10�2 1 (0.37) 1

The table shows the number of genes in the human genome that have tandem repeats within coding regions (exons). The number in parentheses gives
the percentage compared with the total number of genes for that functional category. To validate these predictions, we used available sets of EST
(expressed sequence tags) of all genes in each class and detected the number of variable repeats in each EST set. This analysis shows that most gene
classes predicted to be enriched for variable repeats are indeed also significantly enriched for variable repeats in their EST sequences (P-values shown in last
column). Note that functional classes from different ontology levels are shown, which explains why the sum of all percentages does not add up to 100.
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could identify genes known to be involved in repeat-based
diseases. We used data from the Genetic Association Database
(http://geneticassoiationdb.nih.gov) (Becker et al. 2004). As
shown in Table 3, a simple search for genes containing tandem
repeats does not show any statistically significant enrichment
across the broad diseases classes. However, limiting the search to
the subset of repeats in the top 15% of highest VARscores allows
identification of specific disease categories and genes known to
underlie repeat-related neurodegenerative diseases. In other
words, using the VARscore helps to find statistically significant
enrichment of potentially hypervariable tandem repeats linked
to diseases.

This prompted us to investigate whether SERV allowed us to
identify other candidate genes that might be linked to genetic
diseases. We therefore compiled a table of all repeat-containing
human genes and ranked the list according to the VARscore of
the repeats (Supplemental Table S3). Some of the highest-ranking
genes are already known to contain polymorphic repeats, for
example, the cartilage-specific proteoglycan gene AGC1. How-
ever, for many genes in the list, repeat polymorphisms and/or
their possible phenotypic effect have not yet been described. One
group of such candidate genes are the MUC (mucin) genes. Al-
though they are currently not considered to underlie repeat-
based diseases, size variation in MUC genes has been associated
with progression of immunoglobulin A nephropathy (Li et al.
2006) and with certain eye disease (Berry et al. 2004). Moreover,

elevated expression of MUC genes has been implicated in tumori-
genesis (Schroeder et al. 2004) and is currently used as a marker
for malignant tumors with a high risk for metastasis (Baldus et al.
2004). We have previously shown that an increase in coding
repeats can affect transcriptional activity of the corresponding
gene (Voynov et al. 2006), opening the exciting possibility that
variation in the MUC repeats could underlie changes in expres-
sion observed during tumorigenesis.

Needless to say, not all genes containing hypervariable cod-
ing repeats will lead to disease. Supplemental Table S3 may there-
fore also allow the identification of specific genes involved in fast
evolution of certain traits caused by the high mutation rates in
these intragenic repeats.

Discussion
Our analysis shows that three basic characteristics of a given
tandem repeat, namely number of repeated units, unit length,
and repeat purity, are major determinants for its (in)stability.
While other factors, such as GC content and entropy, may also
exert some effect on repeat stability, the influence of the three
factors used in our model is very intuitive. First and foremost,
repeat variability increases exponentially with increasing num-
ber of repeat units. This observation confirms some of the pio-
neering work of Petes and coworkers, who found an exponential
relation between number of units and mutation rates (Sia et al.

Table 3. Genes lined to neurodegenerative and developmental diseases are enriched for variable intragenic tandem repeats

All genes

Genes with
tandem
repeats

Adjusted P-value:
genes with tandem
repeats vs. all genes

Top 25%
genes based
on VARscore

Top 15%
genes based
on VARscore

Adjusted P-value:
top 15% genes

vs. all genes

(A) Diseases main classes
Neurodegenerative 410 (18.64) 160 (17.30) 1.00 52 (23.74) 41 (28.28) 0.04
Development 156 (7.09) 79 (8.54) 0.29 28 (12.79) 19 (13.10) 0.05
Other 655 (29.77) 278 (30.05) 1.00 74 (33.79) 50 (34.48) 0.75
Unknown 237 (10.77) 86 (9.30) 1.00 20 (9.13) 13 (8.97) 1.00
Reproduction 164 (7.45) 56 (6.05) 1.00 14 (6.39) 10 (6.90) 1.00
Cancer 544 (24.73) 226 (24.43) 1.00 46 (21.00) 30 (20.69) 1.00
Vision 115 (5.23) 44 (4.76) 1.00 7 (3.20) 5 (3.45) 1.00
Pharmacogenomics 65 (2.95) 28 (3.03) 1.00 4 (1.83) 3 (2.07) 1.00
Mitochondrial 1 (0.05) 1 (0.11) 1.00 0 (0.00) 0 (0.00) 1.00
Metabolic 633 (28.77) 243 (26.27) 1.00 46 (21.00) 28 (19.31) 1.00
Cardiovascular 497 (22.59) 184 (19.89) 1.00 37 (16.89) 23 (15.86) 1.00
Aging 86 (3.91) 33 (3.57) 1.00 12 (5.48) 6 (4.14) 1.00
Immune 581 (26.41) 216 (23.35) 1.00 51 (23.29) 34 (23.45) 1.00
Renal 129 (5.86) 46 (4.97) 1.00 9 (4.11) 7 (4.83) 1.00
Psychiatric 370 (16.82) 161 (17.41) 1.00 39 (17.81) 25 (17.24) 1.00
Chemical dependency 105 (4.77) 31 (3.35) 1.00 6 (2.74) 4 (2.76) 1.00
Hematological 104 (4.73) 42 (4.54) 1.00 5 (2.28) 3 (2.07) 1.00
Infection 219 (9.95) 60 (6.49) 1.00 6 (2.74) 6 (4.14) 1.00
Normal variation 87 (3.95) 31 (3.35) 1.00 7 (3.20) 4 (2.76) 1.00

(B) Neurodegenerative diseases
Restless legs syndrome 8 (0.36) 7 (0.76) 0.94 6 (2.74) 6 (4.14) 2 � 10�4

Spinocerebellar ataxia 10 (0.45) 8 (0.86) 0.94 6 (2.74) 6 (4.14) 7 � 10�4

Huntington 11 (0.50) 6 (0.65) 1.00 4 (1.83) 4 (2.76) 0.15
Spinal muscular atrophy 3 (0.14) 2 (0.22) 1.00 2 (0.91) 2 (1.38) 0.27
P300 event-related potentials 3 (0.14) 2 (0.22) 1.00 2 (0.91) 2 (1.38) 0.28
Dyslexia 9 (0.41) 5 (0.54) 1.00 3 (1.37) 3 (2.07) 0.28
Parkinson 105 (4.77) 42 (4.54) 1.00 16 (7.31) 13 (8.97) 0.54
ALS/Amyotrophic lateral sclerosis 12 (0.55) 5 (0.54) 1.00 3 (1.37) 3 (2.07) 0.80

Genes linked to certain disease classes (A) were scanned for the presence of tandem repeats within their coding regions (exons). For each repeat found,
the VARscore was calculated. Then, the number of genes with repeats that have the highest VARscores (top 25% and top 15%) were calculated for each
disease class. After correction for multiple testing, two disease classes (neurodegenerative and developmental) show a statistically significant enrichment
for intragenic repeats that are likely to be variable (high VARscores). (B) To investigate whether using the VARscore allows the identification of genes
known to underlie repeat-based disorders, the class of neurodegenerative diseases was divided further into specific diseases, and the same analysis was
repeated. The results show enrichment of intragenic repeats with high VARscores in two of the known repeat-associated syndromes.
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1997; Wierdl et al. 1997). The exponential increase in mutation
rates with the addition of extra repeat units may indicate that
repeats cannot only recombine with their direct neighbors but
may, in fact, also be able to interact with more distantly located
units. Second, repeat variability increases with increasing unit
length, which probably reflects the effect of an increased “target”
for homologous pairing during slippage, crossover, or SDSA.
Third, repeat instability increases with increasing purity, which
probably reflects an increased tendency for misalignment of the
different repeat units.

The availability of a model to predict repeat variability has
several applications, some of which were demonstrated in this
paper. Despite the widespread use of variable tandem repeats in
genotyping and forensics, results vary widely depending on
which set of repeats is chosen. The lack of any standards makes it
impossible to compare studies and sometimes even leads to
flawed conclusions. Analysis of the VARscore of repeats used in
different studies may help to compare and interpret paradoxical
results and conclusions. Moreover, SERV also allows researchers
looking for new microsatellite markers for genotyping or foren-
sics to estimate if a given repeat would be a suitable marker and
is likely to show variation between closely related (but noniden-
tical) individuals, strains, or species. From our analyses, it seems
that only repeats displaying positive VARscores may be suited,
with ideal markers showing VARscores above 1 but below 3.

Another use of the VARscore is the identification of hyper-
variable repeats in genomes for functional studies. As it becomes
increasingly clear that changes in some repeats may have pro-
found phenotypic consequences, researchers are trying to iden-
tify new examples of this phenomenon. The ability to discrimi-
nate between repeats with low and high variability may be an
important tool to select specific repeats from the large pool of
candidates in the genome. Our basic analysis of the human ge-
nome demonstrates the usefulness of the VARscore to identify
the genes known to be involved in repeat-dependent diseases
such as Huntington’s syndrome and ataxia, as well as to compile
a list of candidate genes containing hypervariable repeats, which
might lead to certain diseases.

Not all repeat variation leads to diseases. Instead, variation
in repeat number might provide the basis for phenotypic diver-
sity, thus allowing swift evolution of certain traits. While this has
only been demonstrated for a limited number of examples, our
analysis indicates that repeats may also play a role in humans.
Here, repeats are enriched in genes involved in transcription and
organismal development, including such key processes as brain
development. Is it possible that so-called “junk DNA” underlies
the swift evolution of the primate brain?

Methods

Data set assembly and analysis of repeat variability
To obtain an expansive and unbiased data set, the complete S.
cerevisiae nuclear genome (S288C sequence 2006 from the
Saccharomyces Genome Database [SGD]; E.L. Hong, R. Bala-
krishnan, K.R. Christie, M.C. Costanzo, S.S. Dwight, S.R. Engel,
D.G. Fisk, J.E. Hirschman, M.S. Livstone, R. Nash, et al.; http://
www.yeastgenome.org/) was scanned for tandem repeats using
the TRF algorithm (Benson 1999). For an elaborate description of
used parameters, thresholds, and sequence data, refer to the
supplemental material online. Repeats that were conserved be-
tween all three strains were classified as variable if the number of
units the three strains were different by at least one full unit

(Supplemental Fig. S4). This procedure yielded 2743 conserved
repeats (242 variable and 2501 nonvariable), of which 320 re-
peats (160 variable and 160 nonvariable) were used as training set
to build the model. The rest of the repeats (2423) were used as a
validation data set. Five test sets were generated from human/
primate, plant, insect, and two bacterial genomes in essentially
the same way as described for the yeast data set (see Supplemen-
tal material for details).

Model development
We used LS-SVMs (Suykens et al. 2002) with nonlinear RBF ker-
nels to generate a multivariate model containing only the most
relevant repeat characteristics that accurately predicts the vari-
ability of a repeat. Seven basic repeat characteristics (purity, unit
length, number of units, TRF score, entropy, GC content, and GC
bias) were considered for inclusion in the model. For a definition
of these variables, see Näslund et al. (2005). LS-SVM models with
RBF kernels (Suykens et al. 2002) were generated using the LS-
SVMlab version 1.5 toolbox for MATLAB (http://www.esat.
kuleuven.be/sista/lssvmlab/).

All models were trained on a balanced training data set com-
prising 320 of all naturally occurring repeats in the S. cerevisiae
genome (training data set). To select the most relevant repeat
characteristics for inclusion in the final model, we applied a for-
ward variable selection procedure using LS-SVMs with an RBF
kernel. The selection criterion we used was the AUC performance
on the remaining 2423 repeats in the S. cerevisiae genome (vali-
dation data set). The model parameters, that is, the regularization
parameter � and the kernel parameter �, were tuned by optimiz-
ing the “10-fold cross-validation” performance (generalization
performance) on the 320 repeats in the yeast training data set.
For details, refer to the supplemental material online. The final
model, called SERV, as a typical LS-SVM classifier with RBF ker-
nel, is formulated as:

y�x� = �
k=1

N

�kykK�x,xk� + b,

with training set {xk,yk}k=1
N (N = 320) containing 320 training tan-

dem repeats characterized by three variables xk ∈ ℜd (d = 3;
purity, unit length, and number of units), and corresponding
binary class labels yk ∈ {�1,+1} (label “+1” in case of variable
repeats; “�1” otherwise), model parameters � and bias term b,
continuous predicted values y(x), and the kernel function using
RBF kernel calculated as

K�x,xk� = exp�− �x − xk �2
2��2�.

Since LS-SVMs generate continuous values (VARscores) for the
predicted repeat variability, comparison of SERV to other models
required us to convert SERV’s continuous output to a binary out-
put. We therefore used the ROC curve to determine the cut-off
point corresponding to the maximum value of the sum of sen-
sitivity and specificity based on the training set (De Smet et al.
2006). The optimal cut-off value was 0.0273. All other model
parameters are given at http://hulsweb1.cgr.harvard.edu/SERV/
supplementalData/. For an overview of the benchmarking and
statistical methods applied, refer to the Supplemental materials.

Analysis of human coding regions repeats
Coding sequences were gathered from Ensembl (human tran-
scripts, version 42). These sequences were scanned for tandem
repeats with TRF (for exact parameters see supplemental materi-
als) and the VARscore was computed for each repeat. The genes
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were ranked according to the VARscore of their respective inter-
nal repeats and subsequently organized in different basic classes:
genes without repeats, genes with repeats, and genes with repeats
belonging to the top 25% and top 15% of highest VARscores.
Functional annotations (gene ontology) were determined using
the Babelomics tools (Al-Shahrour et al. 2005).

To identify variable repeats in EST sequences, we used Uni-
Gene clusters associated to each of these human transcripts. We
then applied the methodology described in O’Dushlaine et al.
(2005) to identify each EST associated to the detected tandem
repeats and analyzed the differences in the number of units. We
used Fisher exact tests corrected for multiple testing using the
false discovery rate (FDR) (Benjamini and Hochberg 1995) to
compute P-values for enrichment of variable ESTs for all genes in
the top 15% VARscore category compared to all genes for which
EST data is available.

Enrichment of variable repeats in genes that are associated
with genetic diseases was calculated using the Genetic Associa-
tion Database (Becker et al. 2004). Statistical significance of en-
richment was calculated using the Fisher exact test. P-values were
adjusted for multiple testing with the FDR function using the
method developed by Benjamini and Hochberg (1995).

Analysis of P. vivax repeats
All tandem repeats present in P. vivax genome (TIGR, http://www.
tigr.org/tdb/e2k1/pva1) were identified using TRF as described
above. VARscores were computed for the repeats used in two
previous studies (Leclerc et al. 2004; Imwong et al. 2006).

Experimental validation of model
The yeast strain used is a prototrophic variant of strain S288C
(Brachmann et al. 1998). All PCR primers are listed in Supple-
mental Table S4. Yeast cultures were grown as described before
(Sherman et al. 1991). YPD medium contained 2% peptone
(Difco) and 1% yeast extract (Difco) and 2% glucose (Difco). Stan-
dard procedures and reagents for molecular biology were used.
Mutation rates were estimated as described previously (Verstre-
pen et al. 2005). For a detailed overview of the strain construction
and experimental procedures, see Supplemental materials.
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