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background. Reported per-patient costs of Clostridium difficile infection (CDI) vary by 2 orders of magnitude among different hospitals,
implying that infection control officers need precise, local analyses to guide rational decision making between interventions.

objective. We sought to comprehensively estimate changes in length of stay (LOS) attributable to CDI at a single urban tertiary-care facility
using only data automatically extractable from the electronic medical record (EMR).

methods. We performed a retrospective cohort study of 171,938 visits spanning a 7-year period. In total, 23,968 variables were extracted
from EMR data recorded within 24 hours of admission to train elastic-net regularized logistic regression models for propensity score matching.
To address time-dependent bias (reverse causation), we separately stratified comparisons by time of infection, and we fit multistate models.

results. The estimated difference in median LOS for propensity-matched cohorts varied from 3.1 days (95% CI, 2.2–3.9) to 10.1 days (95%
CI, 7.3–12.2) depending on the case definition; however, dependency of the estimate on time to infection was observed. Stratification by time to
first positive toxin assay, excluding probable community-acquired infections, showed a minimum excess LOS of 3.1 days (95% CI, 1.7–4.4).
Under the same case definition, the multistate model averaged an excess LOS of 3.3 days (95% CI, 2.6–4.0).

conclusions. In this study, 2 independent time-to-infection adjusted methods converged on similar excess LOS estimates. Changes in LOS
can be extrapolated to marginal dollar costs by multiplying by average costs of an inpatient day. Infection control officers can leverage
automatically extractable EMR data to estimate costs of CDI at their own institutions.
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Clostridium difficile infection (CDI) is the most frequently repor-
ted healthcare-associated infection (HAI) in the United States1

and themajor infective cause of nosocomial diarrhea in developed
countries,2 incurring billions of dollars in excess medical costs per
year.3 Estimates of the per-patient cost of CDI have varied from
$2,871 to $122,318 due to differences in methodology, patient
inclusion criteria, and regional costs.4–6 Given the high hospital-
to-hospital variability of these costs,7,8 infection control officers,
hospital administrators, and clinicians would benefit from esti-
mates tailored to their particular populations and healthcare
practices. Concretely defining the potential economic savings of
CDI preventionwould empower stakeholders to prudently choose
among the many available validated interventions.9,10

Measuring costs within healthcare systems is notoriously
difficult; many hospitals do not have access to itemized reim-
bursement data linked to medical records.11 Even institutions
that have informatics retrospectively linking these data have
relied on the curation of select variables and chart review to

estimate attributable CDI cost.12–14 Nevertheless, electronic
medical record (EMR) systems are used by most first-world
acute-care facilities.15,16 Part of the rationale for these systems
is that hospitals may leverage EMR data for optimal decision
making by inferring causal relationships from raw observations
during routine care.17–19 An analysis based on automatically
extractable data from an EMR that quantifies preventable hospital
costs, such as those attributable to an HAI like CDI, would be
of great value in building a continuously learning healthcare
system.20 EMRs contain many structured fields relevant to this
analysis, including diagnosis codes and lab results demonstrating
onset of HAIs; thousands of variables for procedures, problems,
and medications that can serve as covariates for adjustment in
observational studies; and importantly, the length of stay (LOS)
for each visit, which is the primary contributor to excess costs for
most HAIs, including CDI.3,21,22

The goal of this study was to generate a robust estimate of
local cost associated with CDI using data that are automatically
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extractable from a typical EMR. We used all available struc-
tured data recorded within 24 hours of admission in the EMR
(including >20,000 variables, such as medications reported
and administered, abnormal lab values, and problem list
entries) to build fully data-driven models for CDI risk using a
machine-learning algorithm to avoid the potential bias of
preselected covariates and manual chart review. CDI risk
models trained on uncurated data from EMRs have already
outperformed models that only incorporate variables for
known risk factors, indicating that CDI risk may be nuanced in
particular care settings.23 We then use these trained CDI risk
models for propensity score matching, which allowed estima-
tion of changes in LOS associated with CDI. Most previous
studies of CDI cost have not accounted for the possibility that
longer LOS increases the risk of CDI (ie, reverse causation),
and therefore likely overestimate the cost of CDI.7,24 To adjust
for this, we stratified our analysis by the time of CDI diagnosis
to find the change in LOS conditional on minimal prior
exposure to the hospital environment. Finally, we compared
these results to a multistate model of competing time-
dependent risks between discharge and the onset of CDI.

methods

Data Source

This study was conducted at TheMount Sinai Hospital, a 1,171-
bed tertiary-care hospital in New York City. Records of ware-
housed adult inpatient EMR visit data were deidentified using
the Health Insurance Portability and Accountability Act of 1996
(HIPAA) Safe Harbor method, 45 CFR §164.514(b)(2). Data
were collected on demographics, LOS, time of death, admission
sources, reported medications, and the presence of a “008.45”
International Classification of Disease, Ninth Revision (ICD-9)
principal or secondary visit diagnosis code denoting “Intestinal
infection due to Clostridium difficile.” Furthermore, all records
of medications administered, abnormal lab results, surgery
procedure codes, or problem list ICD-9 codes within the first
24 hours after admission were collected as Boolean variables (ie,
presence or absence). All variables that were uniform across the
study population were dropped from the dataset. The rela-
tionships between collected data elements are summarized in
Figure 1A. TheMount Sinai Institutional Review Board deemed
this research to be exempt from the need for approval.

Study Population

The cohort included all patients 18 years of age or older admitted
between January 1, 2009, and October 22, 2015 (Figure 1B). For
each patient, visits following the first recorded visit in the time
range were excluded so that each patient corresponded to a
single visit. Visits involving a patient death, defined as a recorded
time of death within 24 hours after discharge, were excluded
(2,682 adult patients; 1.5%). Visits with missing or invalid date
information were excluded (<0.01% of all records).

Study Design

Prior studies vary on the use of ICD-9 discharge codes versus
positive laboratory tests to define CDI cases5,6 and identify
differing positive predictive values for immunoassay and
nucleic acid–based laboratory tests.25–27 To ensure maximally
robust results and to allow comparison with prior studies, we
repeated our analysis for 5 definitions of CDI:
Definition 1: An “008.45” ICD-9 visit diagnosis code
Definition 2: ≥1 positive stool toxin enzyme immunoassay

(EIA) lab result
Definition 3: ≥1 positive stool toxin polymerase chain

reaction (PCR) lab result
Definition 4: Definition 2 or definition 3
Definition 5: Definition 1, 2, or 3
Our study period included both a period during which the

EIA assay was the standard hospital laboratory test (~3 years)
followed by a period during which the PCR assay was standard
(~4 years). For case cohorts involving definitions 2 and 3, com-
parisons were only permitted with controls from the period
during which that same test was standard. The hospital laboratory
protocol requires unformed stool samples for either toxin assay.

Statistical Analysis

Details of propensity model development, matching, evalua-
tion of matching performance, and LOS comparisons are
available in Supplementary Methods. Briefly, propensity
models for CDI based on the 5 case definitions were trained
using logistic regression with elastic net regularization. After
exact matching on gender and age bins, nearest-neighbor 1:1
matching on the propensity score was performed with a caliper
of 0.2 standard deviations of the logit of the propensity score
(Figure S1).28 Matching was repeated using the matched con-
trols against remaining unmatched controls to create a
rematched cohort, testing whether matching alone is asso-
ciated with changes in LOS. For each case definition of CDI,
differences of the median LOS between cases and matched
controls were calculated, and statistical significance was
determined using with the 2-sided Mann-Whitney U test.
Although violation of the proportional hazards assumption
(Figure S2) pre-empted traditional Cox survival analysis,
nonparametric Kaplan-Meier estimates of the time-dependent
risk of discharge were plotted for matched cohorts.
To further address the possible effect of time to infection on

CDI risk and measured LOS differences, we repeated the ana-
lysis for definition 4, stratifying by the time of the first positive
toxin assay using 3 ranges: 0–3 days, 3–8 days, and ≥8 days.
Propensity models were again fitted to each of these case
cohorts for matching as described previously, with the added
condition that controls discharged before the start of the CDI
time window were ineligible for matching.29 LOS comparisons
followed the same procedure as above. Furthermore, we fit
a nonparametric multistate model consistent with previous
studies,7,24,30 under which the mean excess LOS was estimated
as the average difference in LOS between patients that had or
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had not transitioned through the infected state for all timepoints,
weighted by the distribution of times spent in the uninfected state.
Analyses were performed in R 3.2.2 (R Foundation for Statistical
Computing, Vienna, Austria); all software code is available at
https://github.com/powerpak/cdi-cost.

results

In total, 371,622 records of visits during the study time range
were queried from the EMR, with 23,968 variables extracted
for each visit (Figure 1A and 1B). After filtering for the index
visit per adult patient and excluding deaths and invalid dates,
171,938 visits were deemed eligible for inclusion and were
classified into 5 overlapping case definitions for CDI. Case
cohort sizes before matching and their overlaps are depicted in
Figure 1C. Regularized logistic regression models predicting

the risk of CDI acquisition were fitted to EMR data from the
first 24 hours of each admission for each case definition, with
consistently high predictive performance (Supplementary
Methods; Figure S3).
For each case definition, >75% of cases were successfully

matched by propensity score to controls (Figure 1C and
Table 1). The groups are well matched on demographics and
propensity scores (Table 1 and Figure S4). Differences in the
median LOS between matched case and control cohorts for all
CDI case definitions were strongly statistically significant,
although the magnitude of the differences varied greatly
between definitions (Figure 2A). The differences in the median
LOS, by case definition, were definition 1 (by ICD-9 code),
3.1 days (95% confidence interval [CI], 2.2–3.9); definition 2
(by positive toxin EIA), 10.1 days (95% CI, 7.3–12.2); defini-
tion 3 (by positive toxin PCR), 6.6 days (95% CI, 5.0–8.1);

A C

B

figure 1. Data sources, inclusion/exclusion criteria, and cohort sizes before matching. (A) Entity-relationship diagram for all EMR data
used to generate models of CDI propensity, using information engineering notation.44 Boxes represent tables of entities with any directly
associated attributes (fields) listed below; single lines represent relationships, with arrowheads indicating the cardinality of each side of the
relationship; crow’s foot arrowhead with circle represents “zero or more”; crow’s foot arrowhead with a cross stroke represents “1 or more”;
cross-stroke arrowhead represents “exactly one.” Blue numbers indicate the number of variables extracted from each associated table for each
visit. (B) Inclusion/exclusion procedure for the present study. Double-line arrows indicate the procession of visit records. (C) Venn diagram
of case cohort sizes for each of the 5 CDI case definitions before matching, including sizes of all intersections between case definitions
(overlaps). Areas are not to scale. There is no intersection between definitions 2 and 3 because only the first positive toxin assay result for
each visit was examined. Definition 4, “by EIA or PCR (+),” is a strict superset of definitions 2 and 3. Definition 5, “by any of these,” is a
strict superset of definitions 1, 2, and 3. Sizes of matched case cohorts are provided in Table 1. EMR, electronic medical record; CDI,
Clostridium difficile infection.
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table 1. Demographic Characteristics of the Study Population and Matched Cohorts

Matched Cohorts for Each CDI Case Definition

Definition 1: By ICD-9 Code Definition 2: By EIA (+)

No. (%) No. (%)
SMD After

No. (%)
SMD After

Characteristic
All Patients
(n= 171,936)

All Controls
(n= 171,356)

Matched Cases &
Controlsa (n= 489)

Matching
(P Value)

All Controls
(n= 73 647)

Matched Cases &
Controlsa (n= 274)

Matching
(P Value)

Female sex 101,964 (59) 101,638 (59) 278 (57) 0 (1) 44,132 (60) 145 (53) 0 (1)
Ageb .016 (0.86) .018 (0.79)
18–29 22,344 (13) 22,266 (13) 69 (14) 9,552 (13) 22 (8)
30–44 39,003 (23) 38,898 (23) 86 (18) 16,451 (22) 26 (9)
45–59 37,234 (22) 37,129 (22) 90 (18) 15,956 (22) 58 (21)
60–74 43,946 (26) 43,802 (26) 122 (25) 18,407 (25) 83 (30)
75–90 26,167 (15) 26,041 (15) 106 (22) 11,817 (16) 70 (26)
≥90 3,244 (2) 3,220 (2) 16 (3) 1,464 (2) 15 (5)

Matched Cohorts for Each CDI Case Definition (Extended)

Definition 3: By PCR (+) Definition 4: By EIA or PCR (+)

No. (%) No. (%)

Characteristic
All Controls
(n= 97,351)

Matched Cases
& Controlsa

(n= 493)

SMD After
Matching
(P Value)

All Controls
(n= 170 994)

Matched Cases
& Controlsa

(n= 788)

SMD After
Matching
(P Value)

Female sex 57,340 (59) 254 (52) 0 (1) 101,469 (59) 408 (52) 0 (1)
Ageb .005 (0.99) .003 (0.98)
18–29 12,714 (13) 47 (10) 22,265 (13) 79 (9)
30–44 22,430 (23) 72 (15) 38,879 (23) 124 (13)
45–59 21,069 (22) 117 (24) 37,025 (22) 209 (23)
60–74 25,273 (26) 136 (28) 43,680 (26) 266 (29)
75–90 14,120 (15) 114 (23) 25,936 (15) 231 (24)
≥90 1,745 (2) 7 (1) 3,209 (2) 35 (3)

Matched Cohorts for Each CDI Case Definition (Extended)

Definition 5: By Any of the Criteria

No. (%)

Characteristic
All Controls
(n= 170,846)

Matched Cases
& Controlsa

(n= 945)

SMD After
Matching
(P Value)

Female sex 101,390 (59) 493 (52) 0 (1)
Ageb .004 (0.93)
18–29 22,245 (13) 87 (9)
30–44 38,845 (23) 134 (14)
45–59 36,999 (22) 208 (22)
60–74 43,643 (26) 267 (28)
75–90 25,912 (15) 217 (23)
≥90 3,202 (2) 32 (3)

NOTE. CDI, Clostridium difficile infection; ICD-9, International Classification of Diseases Ninth Revision; EIA, enzyme immunoassay; PCR,
polymerase chain reaction; SMD, standardized mean difference.
aSeparate columns are unnecessary because 1:1 exact matching was performed on the characteristics shown, and therefore all values are identical.
bSMD is shown for age treated as a continuous variable; coarsened exact matching was performed using the listed age ranges.
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definition 4 (by either toxin assay), 7.2 days (95% CI, 5.8–8.3);
and definition 5 (by any of these), 5.7 days (95% CI, 4.5–6.6).
There were no significant differences in LOS for a second
round of matching between matched controls and remaining
controls (rematched controls) for any of the case definitions
(Figure 2A). Kaplan-Meier curves for the time-dependent risk
of being discharged from the hospital showed significant
differences between matched case and control cohorts up to
post-admission day 60 for all case definitions except ICD-9
code (Figure 2B–F).

Estimates of LOS associated with CDI are inflated by
dependencies on time-to-infection; longer preinfection LOS
increases CDI risk (ie, reverse causation) and leads to overestimates

in attributable cost.7,24 Therefore, we performed 2 follow-up
analyses to account for this. First, we stratified the LOS com-
parison by the time of CDI diagnosis for case definition 4 into
case cohorts of 0–3 days, 3–8 days, and ≥8-days, training new
propensity models for rematching, with similar performance
(Figure S5). Because 3 days is a typical cutoff for differentiating
community-acquired (CA) from healthcare-associated (HA)
CDI,25,31 these strata were named “CA,” “early HA,” and “late
HA,” respectively. As suspected, stratification revealed a posi-
tive correlation between time of diagnosis and CDI-associated
difference in LOS (Figure 3A). The differences in medians
were (1) for CA, 2.5 days (95% CI, 1.2–3.4); (2) for early HA,
3.1 days (95% CI, 1.8–4.4); and (3) for late HA, 14.0 days
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figure 2. Changes in length of stay for 5 case definitions of Clostridium difficile infection, not accounting for time of infection. (A) Violin
plots of the distributions in length of stay for matched cases, matched controls, matched-again controls, and all controls, for each of the 5
case definitions. Darker points and vertical bars depict the median and interquartile range for each group. Horizontal bars depict Mann-
Whitney U tests for significance of differences between groups (***, Bonferroni-corrected P< .001; NS, not significant [P> .1]). (B–F)
Kaplan-Meier plots of the time-dependent probability for a patient to still be in the hospital, comparing matched cases and controls for each
case definition of CDI. Shaded areas depict 95% confidence intervals calculated from standard errors. CDI, Clostridium difficile infection;
ICD-9, International Classification of Diseases Ninth Revision; EIA, enzyme immunoassay; PCR, polymerase chain reaction.
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(95% CI, 9.9–17.1). All comparisons between matched cases
and controls were again strongly statistically significant, and
comparisons with rematched controls were not significant
(Figure 3A). Kaplan-Meier plots likewise confirmed a corre-
lation between time of CDI diagnosis and differences in time-
dependent discharge risk (Figure 3B–D).

To further address reverse causation, we fit a multistate
model similar to previously published studies7,24,30 that
explicitly estimates time-dependent, competing risks of tran-
sitioning to CDI versus discharge. Figure 4A depicts the
model’s states and transitions. After fitting the model for the
case definitions with a time of diagnosis (definitions 2, 3,
and 4), the expected remaining LOS can be compared across
cohorts that have already transitioned to the CDI infected state
versus those that are still CDI negative at any given timepoint
(Figure 4B–D). To summarize the overall relationship between
CDI and LOS, differences in LOS were weighted by the dis-
tribution of times spent in the initial state and averaged. The
average differences for each case definition were: definition 2
(by positive toxin EIA), 3.0 days (95% CI, 2.0–4.0); definition
3 (by positive toxin PCR), 3.5 days (95% CI, 2.7–4.5); and
definition 4 (by either toxin assay), 3.3 days (95% CI, 2.6–4.0).
Notably, the 95% CI for the difference in the definition 4

cohort overlaps the 3.1-day difference for the “early HA” stratum
of the propensity-matched analysis in the same cohort.

discussion

This study examined nearly 7 years of uncurated EMR data for a
single hospital and determined associated costs of CDI as defined
by either visit diagnosis codes or lab results. In the analysis
unadjusted for time to infection, differences in LOS were often
greater than national averages from similar unadjusted stu-
dies,3,5,6 but changes in the case definition resulted in substantial
changes in the estimated differences in LOS. Although 2 hospi-
tals reported good concordance between ICD-9 codes and CDI
toxin assay results,32,33 this is not necessarily the case for all
hospitals. We found that 75% of ICD-9 coded visits involved a
positive toxin assay, while only 46% of visits with a positive toxin
assay had the ICD-9 code (Figure 1C). Changes in LOS were
not significantly different between EIA and PCR toxin assays,
although our study was limited by a smaller sample size for
EIA-positive cases. Toxin assays are likely a more reliable CDI
definition given their basis in clinical symptoms and evidence for
CDI, whereas medical coding suffers from biases introduced by
billing and reimbursement.34,35

0

10

20

30

40

50

<3 days: CA 3–8 days: Early HA >8 days: Late HA

Time of CDI diagnosis

le
ng

th
 o

f s
ta

y 
(d

ay
s)

group matched cases matched controls matched–again controls all controls

*** ***

***

NS

NS

***

******
NS

A

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

P
r 

(s
til

l i
n 

ho
sp

ita
l) matched cases

matched controls

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

P
r 

(s
til

l i
n 

ho
sp

ita
l) matched cases

matched controls

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

time post–admit (days)

P
r 

(s
til

l i
n 

ho
sp

ita
l) matched cases

matched controls

<3 days: CA 3-8 days: early HA >8 days: late HA

time post–admit (days)time post–admit (days)

B C D

figure 3. Changes in length of stay for Clostridium difficile infection defined by any positive toxin assay, stratified by the time to infection.
(A) Violin plots of the distributions in length of stay for matched cases, matched controls, rematched controls, and all controls, for 3 ranges
of the result time for the first positive toxin assay. Points and vertical bars depict the median and interquartile range for each group.
Horizontal bars depict Mann-Whitney U tests for significance of differences between groups (***, Bonferroni-corrected P< .001; NS, not
significant [P> .1]). (B–D), Kaplan-Meier plots of the time-dependent probability for a patient to still be in the hospital, comparing matched
cases and controls for the same 3 ranges of the time of the first positive toxin assay. Shaded areas depict 95% confidence intervals calculated
from standard errors. CDI, Clostridium difficile infection; CA, community acquired; HA, healthcare associated.
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Treating CDI as a baseline condition by ignoring the rela-
tionship between preinfection hospital exposure and CDI risk
overestimates associated costs.7,24,36 Unlike visit diagnosis
codes, toxin assay results provide a presumptive time to infec-
tion that we incorporated into 2 different statistical methods
addressing time-dependent bias. When using a case definition
of either toxin assay being positive, the measured difference in
LOS in the multistate model corresponded closely with the
difference seen in the “early HA” stratum of a time-stratified
propensity-matched analysis (3.3 vs 3.1 days). This finding
suggests that measured differences in this study robustly reflect
associated costs of HA-CDI in our patient population. Because
estimates for each time-to-infection stratum in the matching
analysis differed greatly (Figure 3), time to infection clearly
contributed bias to the unstratified analysis (Figure 2),
demonstrating how the many studies that ignore this bias3,5,6

produce inflated estimates. In our dataset, ignoring time-
dependent bias would lead to a >2-fold overestimation of CDI-
associated LOS. Given our findings, we cautiously interpret the
results of meta-analyses that conflate ICD-9 code and toxin
assay case definitions and often ignore time-dependent bias.4–6

To our knowledge, this is the first study to use machine
learning on uncurated EMR data to estimate the local cost of
CDI. Our models of CDI risk performed on par with prior
models fitted to lower-dimensional data.23,37,38 Because our
models are based on tens of thousands of structured fields in
the EMR that require neither chart review nor manual cura-
tion beyond masking known CDI-related effects, reanalysis of
future data is inexpensive. Starting from exported visit data,
the entire analysis runs in several hours on standard desktop

computers. Therefore, the effects of new interventions against
CDI can be efficiently monitored over time, for example,
continually testing whether new treatments actually lower the
CDI-associated LOS or quantifying cost savings of new pre-
ventive strategies that decrease CDI incidence. Changes in LOS
can be extrapolated to approximate economic costs by multi-
plying by the average cost of extra inpatient days, as LOS is the
main contributor to the cost of CDI.3,21,22,36 In our dataset,
using the time-dependency adjusted differences in LOS of 3.1–
3.3 days and the national average cost of additional inpatient
days for CDI cases,3 the median cost associated with each case
would be approximately $10,600–11,300. This cost is sub-
stantial in comparison to the national average price for an
inpatient visit, which was approximately $13,000 in 2011.11

Using the average yearly case load observed in the dataset for
toxin assay positive cases, our figures represent an annual
accounting cost to Mount Sinai of approximately $1.5 million,
not including the opportunity cost of bed occupancy by CDI
patients or the impact on infection control resources.36 In
principle, our analysis is generalizable to any HAI where
laboratory results recorded in the EMR robustly reflect the
incidence of infections.
Our study has several limitations. The analysis was designed

conservatively, preferring that models underestimate rather
than overestimate CDI-associated changes. For example, we
censored all patient visits ending in death; therefore, our
results are conditioned on patient survival, although a sensi-
tivity analysis that included 12%–16% additional cases ending
in patient death yielded similar quantitative and qualitative
results. Additionally, restricting our analysis to 1 index visit per
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patient certainly excluded many repeat visits for recurrent
CDI, which are known to incur higher costs.12,13,39 We pre-
ferred a relatively simple, fast machine learning technique,
elastic net regularized generalized linear models, whereas more
advanced techniques might marginally improve propensity
model accuracy.

Propensity score matching itself has been criticized for
potentially introducing bias via collider variables.40 However,
substantial empirical comparisons of estimates from observa-
tional and randomized controlled trial data show that pro-
pensity matching often reduces bias.41 Recent investigations of
penalized regression propensity matching also show a reduc-
tion in bias.42,43 We believe our implementation reduced bias
because our estimate of the effect of CDI on LOS demon-
strated significant deviations from unmatched analyses and
concordance with the multistate matching analysis (which did
not leverage propensity scores or matching). We also note that
propensity-matched estimates offer a conservative effect size,
which was the intention of this study.

EMR data have known drawbacks compared to clinical
research data, such as limitations in time precision, the sparsity
of the data, and increased opportunity for coding error. We
did not have structured billing data, so we were unable to
characterize the exact relationship between LOS and costs
beyond the proportional estimate above. Finally, data for only
1 hospital were available for this study. We provide complete
code for our analysis so that it may be reimplemented else-
where and improved by the community.

In conclusion, 2 independent statistical analyses adjusting
for time-dependent bias produced similar results for the CDI-
associated change in LOS at Mount Sinai (3.1 and 3.3 days),
suggesting that automated methods based on machine learn-
ing and uncurated EMR data robustly and conservatively
estimate the local cost of an HAI in both LOS and financial
terms. This procedure is transparent, reproducible, and inex-
pensive, suggesting that hospitalists and infection control
officers can leverage EMR data to estimate their specific, local
costs of HAIs on an ongoing basis rather than relying on widely
varying benchmarks published by other institutions.
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